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Abstract
A positive atomic density ρ(r) = ∑N

j=1 njδ(r − rj ) in a D-dimensional
space can be exactly reconstructed from an appropriate finite subset (complete
set) of its Fourier series coefficients {Uh}h∈ZD or even (limited to the support
{rj }j=1,...,N ) from a finite subset of moduli |Uh|. It is necessary first to determine
a complete set of Fourier coefficients Uh (possibly inside the unavoidable high-
resolution cut-off ‖h‖ < L) and then, by these coefficients, to determine the
unknown density. We report some procedures which are able to single out
complete sets. They are based on a property of Goedkoop’s vector lattice
{|Ah〉}h∈ZD , defined so that 〈Ah|Ak〉 = Uk−h. The property states that if
the vector with index h� = (h�

1, . . . , h
�
D) is a linear combination of the vectors

relevant to a set of indices with a particular shape, then all the vectors relevant to
the hyperquadrant Qh� ≡ {h |hα � h�

α, α = 1, . . . , D} are linear combinations
of the vectors relevant to Q0 \ Q�

h. Moreover, the determination of ρ from a
complete set passes through the solution of a system of polynomial equations
in D variables, whose roots determine the position vectors. We show how to
convert this problem into the simpler problem of sequentially solving a set of
polynomial equations in one variable.

PACS numbers: 6110D, 6110Y, 6112B

1. Introduction

This paper deals with a basic crystallographic problem which, for its implications in many other
fields of modern science, can be considered a classical problem in mathematical physics. The
problem consists in determining exactly an atomic density (cf definition 1) from an appropriate
finite subset (complete set) of its Fourier coefficients. It has been shown (cf [1]) that its solution
is the key step in solving the more awkward problem of determining the support of an atomic
density from a finite subset of the moduli of Fourier coefficients.

The notion of a complete set, denoted by C, is central. Its precise definition will be given
in section 1.1. We recall that Fourier coefficients (or their moduli) are observable inside a
preset high-resolution limit. Thus, to solve the aforementioned problem, we need to determine

3 Author to whom correspondence should be addressed.
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a complete set of Fourier coefficients (or of their moduli) which lies inside such limit, and then
to set forth an explicit algorithm which is able to determine the unknown density. Solutions
of these two points are reported in this work. For greater simplicity, in working out these
results (sections 4–6), we refer to two-dimensional space (D = 2). Section 7 provides the
generalization to arbitrary dimension D.

The plan of the paper is as follows. In section 1.1 of this introduction we give a general
formulation of the problem that will also be split into a series of simpler questions, while
section 1.2 demonstrates connections with the trigonometric moments theory. In section 2 the
problem is reformulated in more explicit crystallographic terms and the question of the moduli
is addressed. Then, section 3 introduces the solution procedure and the criteria to isolate a
complete set C. These criteria must be implemented with a search algorithm which is able
to isolate complete sets having the desired characteristics. Section 4 illustrates one important
result (property 1) which is useful in formulating search algorithms. Section 5 uses property
1 to find out complete sets at small resolution. Section 6 shows how to convert the knowledge
of a complete set C into a set of polynomial equations in a single variable whose roots yield
the atomic coordinates. These results are generalized to arbitrary dimension D in section 7
where some concluding remarks are also reported. Finally, some lengthy proofs are left to the
appendix.

1.1. General formulation

Notation. Given a set S ⊂ Z
D we will denote by S−S the difference set

{
h− h′

∣∣h,h′ ∈ S }.
For any k ∈ Z

D and any set S ⊂ Z
D , S + k denotes the k-translated set {h + k|h ∈ S}. The

integer D-plas a∗α , α = 1, . . . , D (i.e. (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)) denote
the canonical basis of R

D (generators of Z
D). Given h ∈ Z

D , we will denote by Nh ≡
{h ± a∗α, α = 1, . . . , D} the first neighbourhood of h. Given a set S ⊂ Z

D , when no
confusion is possible, we shall sometimes also denote by S the set of Fourier coefficients {Uh}
of a fixed density ρ(r) which have the indices h in S.

Definition 1. We define the atomic density ρ as a distribution having as its domain the unit
hypercube

U
D ≡ {r = (x1, . . . , xD) ∈ R

D
∣∣ xα ∈ [0, 1), α = 1, . . . , D

}
(1)

and constituted by a finite sum of N Dirac masses in the distinct points {rj }j=1,...,N ∈ U
D

(scattering centres) with strictly positive weights {nj }j=1,...,N (charges), so that

ρ(r) =
N∑

j=1

njδ(r − rj ). (2)

Remark 1. The normalization
∑N

j=1 nj = 1 will be assumed throughout this work.

The Fourier series coefficients of ρ are, ∀ h ∈ Z
D ,

Uh =
∫

UD

dDr ρ(r) e2π ih·r =
N∑

j=1

nj e2π ih·rj . (3)

The symbol · means the usual scalar product in R
D . The set {Uh}h∈ZD will also be called the

infinite diffraction pattern, or IDP. The inverse Fourier transform is

ρ(r) =
∑
h∈ZD

Uh e−2π ih·r. (4)
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Remark 2. In general, Uh ∈ C. With ρ being real-valued, equation (3) yields U−h = Uh

(an overbar denotes the complex conjugate). Furthermore, normalizing ρ as in remark 1, it is
U0 = 1.

Remark 3. The restriction of the index h to Z
D corresponds to considering ρ as the restriction

to U
D of a periodic function of period U

D . In this sense equation (4) is valid for any r ∈ R
D .

The coordinates of the scattering centres {rj }j=1,...,N remain uniquely defined modulo 1.

Owing to the functional form of equation (2), ρ depends on a finite number of parameters,
namely the coordinates of the scattering centres {rj }j=1,...,N and the charges {nj }j=1,...,N , while
the IDP {Uh}h∈ZD is infinite. We will consider subsets {Uh}‖h‖<L (limited diffraction pattern,
or LDP) where L > 0 is the high-resolution cut-off and ‖h‖2 ≡ h · M∗h, where M∗ is a
positive-definite metric tensor (cf section 2.1).

The problem we deal with is the following:

Problem 1 (Crystallographic phase problem). Knowing the moduli |Uh| of the Fourier
coefficient of an atomic density ρ belonging to a LDP {Uh}‖h‖<L of given radius L, and
with prior knowledge of the number N of scattering centres and the values of the charges
{nj }j=1,...,N , is it possible to and, in the affirmative case, how do we determine the coordinates
{rj }j=1,...,N of the scattering centres?

The physical aspects of this problem (cf also section 2) are clear. |Uh| are the observables,
L is an experimental high-frequency cut-off and ρ is the unknown atomic density to be
determined. As shown in [1] (briefly summarized in section 2.2), problem 1 can be split
into two sequential subproblems. The first is:

Problem 2 (Complex amplitude problem). Knowing the Fourier coefficients Uh of an
atomic density ρ belonging to a LDP {Uh}‖h‖<L of given radius L, is it possible to (and
how do we) determine

• the number N of scattering centres,
• the coordinates {rj }j=1,...,N of the scattering centres,
• and the charges {nj }j=1,...,N?

The second subproblem consists in deconvolving the density obtained by solving
problem 2. As the deconvolution is essentially a discrete one, it can always be solved (see
proposition 1 in section 2.2), provided the density is known precisely. In contrast, a simple
truncated inverse Fourier transform based only on the coefficients with ‖h‖ < L is often
insufficient in this respect.

Problem 2, which is important in its own right, is the main object of this paper. For a
more detailed explanation, we will reformulate problem 2 as a sequence of questions. The first
question is:

Question 1. Given an atomic density ρ (cf definition 1) does there exist a finite subset
C ⊂ {Uh}h∈ZD of its IDP such that all the Uh �∈ C can be determined from those in C?

For the one-dimensional case the answer has been known to be affirmative since 1927
thanks to the work of Ott [2]. For larger dimensions, the question was answered affirmatively
only in recent years (cf [1] and references therein).

Definition 2. For a given atomic density ρ a finite subset C ⊂ {Uh}h∈ZD of its IDP such that:

• all the Uh �∈ C can be determined from those in C;
• none of its elements can be excluded without failing to determine part of the IDP {Uh}h∈ZD

will be called a complete set C.
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Figure 1. An illustration of a base set B = Ba∗1 [m1 . . . mp] (◦) obtained by the algorithm of
section 3.2 and [1]. It is shown also the relevant complementary set Bc (•), and the rest of the
resulting complete set C (×). Bc consists of the KH zeros found during the search. One of the
quadrants originating on a KH zero and hence excluded from the search is also shown. C contains
all the indices of the entries of the KH matrices used in the search. The density ρ is described in
figure 3. We have p = 41 rows with lengths [m1 . . . mp] = [32, 29, 27, 27, 24, 23, 21, 17, 16, 14,
14, 13, 9, 9, 8, 6, 6, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1].

Remark 4. We list some general properties characterizing a complete set C:

• Necessarily U0 ≡ U(0,0,...,0) ∈ C and, owing to remark 2, we lose no generality in
assuming that, if Uh ∈ C, also U−h = Uh ∈ C.

• Only atomic densities (cf definition 1) admit a finite complete set (cf [3], section 3).
• The fact that any set C is or not a complete set for an atomic density ρ does not depend

on the values of the (positive) charges {nj }j=1,...,N , but only on the coordinates of the
scattering centres {rj }j=1,...,N (cf [3], proposition 3.2).

• The set of indices {h}Uh∈C of a complete set C cannot be completely contained in a proper
subgroup of Z

D (cf [3], theorem 3.5).

We can now proceed with a further question.

Question 2. Is the complete set C uniquely determined for a fixed atomic density ρ?

In general, for a given ρ, several different complete sets C may exist. Even their cardinality
may differ. An example is reported in figures 1 and 2.

Question 3. Is there an algorithm which is able, for any given (unknown) ρ, to single out at
least one of the possible complete sets C?
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Figure 2. A base set B (◦) isolated by the centred square search algorithm (cf section 5) is shown,
together with the relevant complementary set Bc (•) and complete set C (×). Sets B and C are much
more compact than those of figure 1. The ellipse (——) delimits a hypothetical high-resolution
cut-off that contains C. One of the excluded quadrants (——) originating on a KH zero is also
shown.

For the one-dimensional case this algorithm has long been known [2]. For higher
dimensions, such an algorithm was devised for the first time in [1] and is sketched in section 3.2.
In sections 4 and 5 we present an improved algorithm.

Remark 5. Both algorithms yield complete sets C characterized by some further properties:

• Construction. The set of indices {h}Uh∈C is a union of difference sets Sk − Sk of a finite
family of finite sets of indices S1, . . . ,SM which satisfy (cf equation (23))

∗ Sk ⊂ {h}Uh∈C , k = 1, . . . ,M;
∗ Sk \ (Sk ∩ Sk+1) is a singleton, Sk+1 \ (Sk ∩ Sk+1) �= ∅.

The union of these singletons is denoted by Bc (i.e. Bc ≡ ⋃M−1
k=1 Sk \ (Sk ∩ Sk+1)) and is

called the complementary set of the base set B ≡
(⋃M−1

k=1 Sk

)
\ Bc (cf section 3.2).

• Connectedness. If h ∈ C, then its first neighbourhood contains other indices of C:
Nh ∩ C �= ∅.

• Boundedness. C ⊂ {h |−Nα � hα � Nα, α = 1, . . . , D }, where Nα is the number of
distinct αth coordinates xj,α of the scattering centres {rj }j=1,...,N . See property A2 in the
appendix.

Clearly, if we have a high-frequency cut-off L, it is of interest to single out a complete set
fully contained in the LDP. Formally we must require

LC ≡ max
Uh∈C

‖h‖ < L. (5)
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Question 4. Given an (unknown) ρ and a fixed high-frequency cut-off L, is there an algorithm
which is able to single out a complete set C having LC < L?

The answer of course depends on the value of L. A hyperparallelepiped bounding the set of
indices of C is given in remark 5. However, it generally yields a very large bound for LC . In
contrast, the number of unknown quantities present in equation (2) is N(D + 1) + 1 and this
value is a lower bound for the cardinality of C.

If L is too small the data will not be sufficient. Since the smallest cardinality of complete
sets is a priori not known, question 4 is better reformulated as:

Question 5. For any given (unknown) ρ, is there an algorithm which is able to single out the
complete set C with the smallest possible LC?

The answer is affirmative. The algorithm is discussed in section 5. It is based on an
‘isotropic’ inclusion algorithm which starts from h = 0 and ensures the result by construction.
Such an algorithm, in the case of insufficient data, would stop prematurely. In any other case it
will yield a solution. In contrast, the algorithm reported in [1] is based on a directional inclusion
algorithm with the preferred growth direction along one of the base vectors {a∗α}α=1,...,D and
the resulting sets will turn out to be quite elongated along the chosen direction.

Finally, we have to ask:

Question 6. Given any complete set C relevant to a given (unknown) ρ, is there an algorithm
able to determine the associated ρ?

The answer is again affirmative. It is possible to proceed in two different ways. The first is
an iterative algorithm (cf [1]) which, starting from C, is able to determine a number of Fourier
coefficients sufficiently large to calculate ρ, with the desired accuracy, by using the inverse
Fourier transform given by equation (4). The second, more analytical one, uses the knowledge
of C to construct a system of polynomial equations in D variables, which is converted by the
procedure explained in section 6 into a (finite) sequence of univariate polynomial equations
whose solutions yield the coordinates {rj }j=1,...,N of the density support.

1.2. Connection with the trigonometric moments theory

Let

T
D ≡ {z = (z1, . . . , zD) ∈ C

D
∣∣ |zα| = 1, α = 1, . . . , D

}
.

Given any atomic (positive) density ρ(r) on U
D (cf definition 1), by the natural isomorphism

τ : r �−→ z ≡ (z1, . . . , zD) = (e2π ix1 , . . . , e2π ixD ) ≡ e2π ir

between U
D and T

D we can define µ(z) = ρ
(
τ−1(z)

)
which turns out to be a (positive) Borel

measure (cf [5]) on T
D having finite support {e2π irj }j=1,...,D ⊂ T

D . Note that the Fourier
coefficients Uh of ρ(r) are the trigonometric moments of µ(z).

The theory of truncated trigonometric moments deals with the relations between finite
index sets S ⊂ Z

D , associate coefficients sets {Uh |h ∈ S} and positive measures µ(z) on
T

D . Consider first the determinacy problem (cf [3]): given a set S ⊂ Z
D containing 0 and

such that h ∈ S iff−h ∈ S, and given an atomic density with finite support ρ, to find whether
the subset of Fourier coefficients {Uh}h∈S determine ρ uniquely. The solution of problem 2
(see sections 3–6) may give an important contribution to this field.

Another topic in the theory of trigonometric moments is the extension problem [4]. Some
results in this field are particularly illuminating.

Consider a finite set S ⊂ Z
D and its difference set S−S. Let M denote the cardinality of

S and M ′ the cardinality of S − S. Let us order the elements of S arbitrarily as h1, . . . ,hM .
Consider now an arbitrary collection of complex numbers {Uh}h∈S−S .
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Definition 3. The generalized Toeplitz matrix (cf [6]) generated by S for the set {Uh}h∈S−S is
the matrix of order M whose entries are (U)kl = Uhl−hk

.

The set {Uh}h∈S−S is said to be (semi-)positive definite when the relevant Toeplitz matrix
is (semi-)positive definite. If for a choice {Uh}h∈S−S there exists a positive (not necessarily
atomic) density ρ on U

D (measure µ on T
D) such that {Uh}h∈S−S are a subset of its Fourier

coefficients (moments), then ρ (µ) is said to be a representing density (measure) for {Uh}h∈S−S ,
which is said to be extendable. A necessary condition (cf [7]) for the existence of a representing
density (measure) is that {Uh}h∈S−S should be (semi-)positive definite. Anyhow, for general
choices of S, this condition is not sufficient (counterexamples are reported in [4]). However,
if {Uh}h∈S−S admits (possibly many) representing densities, theorem 3.4 of [4] states that
between the representing densities there is always an atomic density whose finite support has
cardinality N � M . Hence, for any finite set S ⊂ Z

D , the extendibility of a collection
{Uh}h∈S−S is equivalent to the existence of a representing atomic density.

Given a finite set S, a sufficient condition for a (semi-)positive definite collection of
complex numbers {Uh}h∈S−S to yield at least one representing density, is given in theorem 5.2
of [4]. The theorem uses the concept of Goedkoop’s vector lattice, first introduced in [8].

Definition 4. Consider a finite-dimensional Hilbert space H with a Hermitian scalar product
〈·|·〉 (in Dirac’s notation). Consider the family of vectors |Ah〉 ∈ H, h ∈ Z

D , having the
properties:

• the vectors {|Ah〉}h∈ZD span H;
• the vectors are generated by a vector |A0〉, such that ‖|A0〉‖2 = 〈A0|A0〉 = 1, and by D

commuting unitary linear operators G1, . . . , GD through the relations

|Ah〉 = Gh1
1 Gh2

2 . . . GhD

D |A0〉 ∀ h = (h1, . . . , hD) ∈ Z
D.

A consequence of these properties is that

• ‖|Ah〉‖2 = 〈Ah|Ah〉 = 1, for every h ∈ Z
D ,

• 〈Ah|Ah+k〉 = 〈Ah′ |Ah′+k〉, for every h,h′,k ∈ Z
D .

The set of vectors G ≡ {|Ah〉}h∈ZD is called Goedkoop’s vector lattice. The term ‘lattice’
is used to stress that Z

D is homomorphic to G after defining in G the sum operation as
|Ah〉� |Ak〉 = |Ah+k〉.

Goedkoop [8] showed that when a representing atomic density exists, one can always
construct this vector lattice (cf definition 6). Theorem 5.2 of [4] states that, given any finite
set S ⊂ Z

D and any (semi-)positive definite collection of complex numbers {Uh}h∈S−S , the
existence of Goedkoop’s vector lattice such that 〈Ah|Ak〉 = Uk−h ∀ h,k ∈ S is also sufficient
for the extendibility of {Uh}h∈S−S . Goedkoop’s vector lattice turns out to be a very powerful
analytical tool. We will show, in fact, that this construction also allows us to solve problem 2.

2. Crystallographic formulation and splitting

2.1. Some crystallographic definitions

Presently, the definition of crystal is still evolving towards more general formulations [9].
The most recent definition requires a crystal to have an essentially discrete diffraction pattern.
This means that the scattered intensity is concentrated in a set of sharp Bragg peaks. In the
following, however, our analysis will deal with ideal crystals, defined below.
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Definition 5. A D-dimensional ideal crystal results from the periodic replica of its unit cell C,
determined by a set of D linearly independent vectors a1, a2, . . . ,aD ∈ R

D via

C ≡ {x1a1 + · · · + xDaD

∣∣ 0 � xα < 1, α = 1, . . . , D
}
.

The unit cell contains N atoms with specified atomic numbers Z1, Z2, . . . , ZN . The D-plas
r ≡ (x1, . . . , xD) (conventionally fractional coordinates) evidently define U

D (cf equation (1)).
The electron density in the unit cell hence may be reduced (cf [10]) to the form

ρ(r) =
N∑

j=1

Zjδ(r − rj ). (6)

We arrive at exactly the form of equation (2) normalizing as in remark 1, with

nj = Zj/(Z1 + · · · + ZN). (7)

The diffraction diagram consists of sharp Bragg peaks of intensity Ih located at the lattice
of points qh of reciprocal space (reciprocal lattice) given by

qh = h1a
∗
1 + · · · + hDa∗D with h ≡ (h1, . . . , hD) ∈ Z

D. (8)

Here vectors4 a∗αs, which define the reciprocal unit cell, are determined by the relations
a∗α · aβ = δαβ , α, β = 1, . . . , D, where δαβ is the Kronecker symbol.

Note. qh is conveniently replaced by h. Distances are preserved by defining ‖h‖ ≡ ‖qh‖ =
(qh · qh)

1/2. From equation (8), ‖h‖ = (hM∗h)1/2, with M∗
αβ = a∗α · a∗β . If λ is the

incident radiation wavelength, the maximum experimental range for crystal diffraction is
‖h‖ < L = 2/λ (limiting sphere, cf [10]).

The Fourier coefficients of equation (6) normalized as in equation (7) are

Uh ≡
N∑

j=1

nje2π ih·rj (9)

coincident with equation (3). The Uhs are called unitary structure factors (USF). After the
appropriate corrections, the Bragg peak intensity at qh (cf [10, 11]) is related to Uh by

Ih =
∣∣Uh

∣∣2. (10)

The crystal structure is known when the positions {rj }j=1,...,N of the atoms in a unit cell
are known. The crystallographic phase problem is equivalent to problem 1 of section 1.1,
because it consists in determining the atomic positions knowing the intensity of the Bragg
peaks Ih in a given limiting sphere ‖h‖ < L = 2/λ.

2.2. Splitting of the problem

A procedure which is able to yield the solution(s) of the crystallographic phase problem
(generally formulated in section 1.1, problem 1) is the so-called algebraic approach (cf [2, 12–
16], and the recent review in [1]). The crystallographic phase problem may be split into two
problems (as anticipated in section 1.1) to be solved subsequently. Let us show this point.

Splitting of the problem. The substitution of equation (9) into equation (10) yields

Ih =
N∑

j=1

n2
j +

∑
1�i �=j�N

ninje2π ih·(ri−rj ). (11a)

4 The crystallographic (three-dimensional) notation is a, b, c for a1,a2,a3 and a∗, b∗, c∗ for a∗1,a
∗
2,a

∗
3.
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Each exponential present on the right-hand side of (11a) is left invariant by the transformation

ri − rj �−→ �δij = (ri − rj ) mod 1 (11b)

where the modulo operation is applied to each component. Thus, we can associate to each
(ri − rj ) a vector �δij uniquely determined by the condition that it lies inside the unit cell U

D

(i.e. 0 � δij,k < 1, for k = 1, 2, . . . , D). Now label the distinct �δij s with index ̂ running from
1 to N̄ , and denote by L̂ the set of the distinct ordered pairs (i, j) such that �δij = �δ̂. Even

though it is known that N � N̄ � N(N − 1)/2 and that
⋃N̄

̂=1 L̂ is the set of all the pairs
(i, j) with 1 � i �= j � N , these conditions are not yet sufficient to determine N̄ and the L̂s.
Nonetheless, equation (11a) can be written as

Ih −
N∑

j=1

n2
j =

N̄∑
̂=1

e2π ih·�δ̂

∑
(i,j)∈L̂

ninj . (11c)

After putting

ν̃̂ ≡
∑

(i,j)∈L̂

ninj

( ∑
1�r �=s�N

nrns

)−1

Jh ≡
(
Ih −

N∑
j=1

n2
j

)( ∑
1�r �=s�N

nrns

)−1

(12)

equation (11c) becomes

Jh =
N̄∑

̂=1

ν̃̂ e2π ih·�δ̂ . (13)

Remark 6. Firstly, we suppose we know the number N and the values {nj }j=1,...,N of the
normalized charges (cf equation (7)). Equation (12) implies that the quantities Jh are fully
known in terms of the intensities Ih = |Uh|2, and vice versa. Secondly, equation (13) shows
that the quantities which determine (and are determined by) the intensities {Ih}h∈ZD are the
�δ̂s, the ν̃̂s and N̄ .

At this point it suffices to note that equation (13) has the same structure as equations (3) or
(9), because �δ̂ ∈ U

D (similarly to the rj ) and the ν̃̂s (as the nj s) are positive and their sum
is normalized to 1 by construction. Therefore, Jh are the Fourier coefficients of the atomic
density

ρP(r) =
N̄∑

̂=1

ν̃̂ δ(r − �δ̂). (14)

This describes a set of N̄ scattering centres with charges ν̃̂ set at points �δ̂. Hence the problem
is split into two parts.

• First, from a finite subset of Jh we must determine the number N̄ , the vectors {�δ̂}̂=1,...,N̄
and charges

{
ν̃̂

}
̂=1,...,N̄ . This is exactly (symbols apart) problem 2 of section 1.1.

• Second, after determining N̄ , {�δ̂}̂=1,...,N̄ and
{
ν̃̂

}
̂=1,...,N̄ , we must determine the atomic

positions {rj }j=1,...,N also using the prior knowledge of N and of the charges {nj }j=1,...,N .

Note. We call the density ρP in equation (14) the Patterson map because it is simply related by
equations (11a)–(13) to the Fourier transform of the intensities Ih. Conventionally the latter,
calculated only from the observed {Ih}‖h‖<2/λ (see the note below equation (8b)), is called the
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Patterson map (see [10, 17–19]). In the form of equation (14), ρ P is infinitely resolved and
hence it is an atomic density.

The solution of the second problem is purely numerical in the sense that:

Proposition 1. All the possible different configurations {rj }j=1,...,N of N scattering centres
with charges {nj }j=1,...,N which produce a given Patterson map (see equation (14)) turn out to
be determined after performing a finite number of arithmetical operations.

Proof of proposition 1. For the proof and a precise description of this algorithm see section 3.2
of [1]. �

3. The complex amplitude problem

This and the following sections deal with problem 2 of section 1.1, the complex amplitude
problem (CAP). For clarity, hereinafter we will always use the symbols Uh, N , nj , rj , as in
section 1.1, instead of Jh, N̄ , ν̃̂, �δ̂ as in section 2.2.

Since the number of the unknown nj and rj quantities, leaving aside momentarily N , is
(D + 1)N , from equation (9) and from the theory of implicit functions one concludes that only
(D + 1)N USFs (Fourier coefficients) can be functionally independent, while the remaining
USFs can be expressed in terms of the former. The troublesome step is the determination of
the independent USFs.

3.1. The algebraic approach: case D = 1

To solve the CAP, useful hints are obtained from Ott’s one-dimensional solution [2]. In the
one-dimensional case, we can rewrite equation (9) as

Uh =
N∑

j=1

njξ
h
j ξj ≡ exp(2π ixj ). (15)

The ξj s are all distinct. They are the (unimodular) roots of a polynomial equation of degree
N given by

PN(z) =
N∏

j=1

(z− ξj ) =
N∑

*=0

α*z
N−* = 0 (16)

where α0 = 1 and the other α*s are the *th degree fully symmetrical polynomial functions
[20] of ξ1, . . . ξN . For any j ∈ {1, . . . , N}, after putting z = ξj in the last of equalities (16),
we obtain ξN

j = −αNξ 0
j − αN−1ξ

1
j − · · · − α1ξ

N−1
j . Substituting the result in equation (15) it

follows that

UN+m = −
N−1∑
k=0

αN−kUk. (17)

In this way, all the Fourier coefficients Uk with k � N (hence the whole diffraction pattern
{Uh}h∈Z) may be determined iteratively starting from U0, U1, . . . , UN−1. Otherwise, once
the coefficients {α1, . . . , αN } are known, we may as well solve the polynomial equation (16)
determining {ξj }j=1,...,N as its roots. Successively the charges {nj }j=1,...,N are obtained by
solving the system ofN linear equations obtained from equation (15) withh = 0, 1, . . . , N−1.

We shall now show how to determine N and coefficients {αk}k=1,...,N . This can be done
by analysing the vectorial structure underlying the CAP.
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Definition 6. Following Goedkoop [8] (see, also, [21]), consider an N -dimensional Hilbert
space H with an orthonormal basis {|ej 〉}j=1,...,N and the Hermitian scalar product 〈·|·〉. Now
construct the vectors

|Ah〉 ≡
N∑

j=1

n
1/2
j e2π irj ·h|ej 〉 with h ∈ Z

D. (18)

With normalization in remark 1, we have

〈Ak|Ah+k〉 = 〈A0|Ah〉 = Uh ∀ h,k ∈ Z
D (19)

‖|Ah〉‖2 = 〈Ah|Ah〉 = U0 = 1 ∀ h ∈ Z
D. (20)

Recalling definition 4, it is evident that {|Ah〉}h∈ZD form a Goedkoop vector lattice satisfying
equation (19). In particular, we note that, for any h = (h1, . . . , hD), equation (18) can be
written as |Ah〉 = Gh1

1 . . . GhD

D |A0〉, where {Gα}α=1,...,D are linear operators represented in the
basis {|ej 〉}j=1,...,N by matrices Gα = diag(exp(2π ia∗α · r1), . . . , exp(2π ia∗α · rN)) which are
evidently unitary and commuting.

Note. Basis vectors {|ej 〉}j=1,...,N are the common eigenvectors of the operators {Gα}α=1,...,D .
The degeneration of the set of eigenvalues {exp(2π ia∗α · rj )}α=1,...,D; j=1,...,N is completely
removed because the scattering centres {rj }j=1,...,N are all distinct modulo 1. Determining the
scattering centres is hence equivalent to determining the eigenvalues of {Gα}α=1,...,D .

Now consider the ordered index sequence
{
h1, . . . ,hq

}
. Take the associated vector sequence{|Ah1〉, |Ah2〉, . . . , |Ahq

〉} and form the corresponding Gram matrix [22] (Uq), whose entries
are (Uq

)
ij
= 〈Ahi

|Ahj
〉 = Uhj−hi

. (21)

The matrix in equation (21) (cf also definition 3) has different denominations. According
to the first expression, it is a Gram matrix, and according to the second it is a Toeplitz
matrix (for D > 1, a generalized Toeplitz matrix). This double identification is the strongest
way to characterize (cf section 1.2) the Fourier coefficients of a positive atomic density.
Moreover, its determinant is a generalized Vandermonde determinant [23]. Finally, according
to crystallographers, it is a Karle–Hauptman (KH) matrix after their basic work [7]. We will
say that the matrix (Uq) is generated by the sequence

{
h1, . . . ,hq

}
.

Definition 7. If the KH matrix generated by a set of indices B is non-singular while that
generated by B ∪ h0 is singular, h0 will be said a KH zero for set B.

Returning to the case D = 1, now consider sequences
{
h1,h2, . . . ,hq

} = {0, 1, . . . , q−
1}. Let us override the trivial cases q = 1 or 2. According to a basic property of Gram
matrices [22], we have det(U3) �= 0 if and only if the three generating vectors are linearly
independent. Assume that this condition is met and enlarge the previous set including the
vector |Ah4〉 = |A3〉. Denote by (U4) the resulting Gram matrix. Assume that det(U4) �= 0 and
iterate the procedure by adding, at each step, the next vector |Ahq+1〉 = |Aq〉with q = 4, 5, . . . .
As q increases, a singular matrix (or a KH zero) must necessarily be found because the space
H has dimension N . The crucial point is that, having always chosen hq = q − 1, the order of
the first singular matrix will be exactly N + 1. This is evident from the analytical expression
of the determinant of (Uq) given by equation (A1) in the appendix. In this way, N can be
determined. At this point it is possible to determine the αj coefficients from (UN), the largest
non-singular matrix, by the relations (see equations (2.16), (2.43b) and (2.45) of [1]), as

αN−(j−1) =
N∑
i=1

(U−1
N )jiUN+1−i j = 1, . . . , N. (22)
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3.2. The algebraic approach: case D > 1

Definition 8. We will speak of the linear dependence or independence of a set of indices
{h1, . . . ,hm} meaning the linear dependence or independence of the associated Goedkoop
vectors {|Ah1〉, . . . , |Ahm

〉}. We will then call base set a set of distinct, linearly independent
indices B = {h1, . . . ,hN } having the largest cardinality, so that the associated Goedkoop
vectors {|Ah1〉, . . . , |AhN

〉} form a base of H.

An algebraic solution of the CAP is possible, whatever D, when an algorithm has been
devised which is able to single out a base set. The dimension of the space H is not known
a priori, even if we know that it is finite. In general, knowing only the scalar products of
general vectors, it would not be possible to determine its dimension with a finite number of
operations. However, the properties of Goedkoop’s vector lattice and of the related system of
polynomial equations (see section 6) makes the answer positive in this case.

The procedures, presented here to single out a base set, simultaneously also determine
a complete set. In fact, the determination of a base set needs the knowledge of several
KH matrices which in turn contain several Fourier coefficients. The same coefficients are
a complete set C in the sense of definition 2. For the proof see proposition 3 in section 6. Let
us now describe exactly which Fourier coefficients are needed.

Base sets are obtained by enlargement procedures like that reported in section 3.1. Some
singular KH matrices (i.e. some KH zeros) will be found while B is singled out. The set of
these KH zeros forms the complementary set of B, denoted by Bc = {h′1, . . . ,h′M}, in the
order in which they have been found. Take h′k as the kth element of Bc. Let B−(k) denote the
subset of B formed by those indices which were included in B before finding the KH zero h′k ,
and let B+(k) ≡ B−(k) ∪ {h′k}. Now we can explain the first property claimed in remark 5. It
is sufficient to substitute the sets denoted there by Sk with the sets B+(k). In fact, the linear
independent subsets B−(k) obey B−(k) ⊂ B−(k+1) by construction. Therefore, h′k is the only
element of B+(k) which does not belong to B+(k + 1), so B+(k) \ (B+(k)∪B+(k + 1)) = {h′k}.
On the other hand, as B+(k)∪B+(k + 1) = B−(k), the set B+(k + 1)\ (B+(k)∪B+(k + 1)) is not
empty as it contains at least h′k+1. Note that to establish the linear independence of the set B−(k)
and the linear dependence of the set B+(k) we have to verify that the KH matrix generated
by the first set is non-singular and that generated by the second set is singular. Hence, for
every k = 1, . . . ,M , we need to know all the Fourier coefficients (or USFs) which enter these
matrices, that is to say all the Fourier coefficients with index in B+(k) − B+(k). A complete
set is hence given by

C =
M⋃
k=1

(B+(k)− B+(k)
)
. (23)

Remark 7. We remark now that:

• sets Bc and C are uniquely determined by B;
• given an atomic density, base sets and complete sets are not unique, but the cardinality of

a base set, in contrast with that of a complete set, is unique.

The radius LC of a complete set and its cardinality depend on the selected base set B. In
the presence of a high-frequency cut-off L (cf section 1.1, questions 4 and 5) we must require
LC < L. For this reason, among the possible procedures for singling out base sets, those
yielding complete sets with smaller radius are the most useful ones.

We now sketch the search algorithm reported in [1] for the case D = 2 so as to better
clarify the concepts stated above.
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Definition 9. We will denote by Qh the positive quadrant of Z
2 originating at h0,

Qh0 ≡ {h = (h, k) | h � h0, k � k0}.
This algorithm performs an axial search in the first quadrant Q0. The limitation to Q0 is
legitimate because the difference set B − B is left invariant by a translation B �−→ B + h.
Axial search means that the base set is enlarged preferably along one of the two axes of Z

2,
a∗1 ≡ (1, 0) or a∗2 ≡ (0, 1) (in [1] they were denoted by a∗ and b∗).

Notation. As different search directions generally yield different base sets, when we wish to
specify the chosen search direction a∗α we will write Ba∗α .

Let us choose, for definiteness, the axis a∗1. As in the one-dimensional case, one
successively includes in B indices hr = (r − 1)a∗1 = (r − 1, 0) with r = 1, 2, 3, . . . until we
find the first KH zero at, say, r = m1 + 1. At this point, index hm1+1 = (m1, 0) is included in
Bc rather than in B. Then we continue enlarging B by including indices (r, 1), r = 0, 1, 2, . . . ,
lying on the next upper half-axis parallel to a∗1. This continues until

• either after including an index (m2, 1) with m2 < m1, we find another singular matrix.
Then, (0, 1), . . . , (m2 − 1, 1) are included in B and (m2, 1) in Bc;

• or we end up including index (m1−1, 1) without finding a KH zero. As it must necessarily
be m2 � m1 (cf remark 8, proposition 2) at this point we may avoid examining index
(m2, 1) (it must be a KH zero) and also omit including it in Bc as its knowledge is
‘redundant’.

Then we pass to the next upper half-line and so on.

Remark 8. With this procedure (see proposition 2) every KH zero has a broader meaning. If
h′k is the kth KH zero found and B−(k) is the portion of the base set isolated previously, it
means not only that h′k is linearly dependent on B−(k) but all of the positive quadrant Qh′k (see
definition 9) is linearly dependent on B−(k). Hence the whole quadrant Qh′k may be excluded
from a further search. A weaker version (property 1) of this property will be used to construct
more general base sets (cf section 5). A consequence is that B is delimited by the positive
half-axes a∗1 and a∗2 and by a staircase connecting them. In fact, the lengths of the rows of B
form a decreasing sequence, m1 � m2 � · · · � mp (and likewise for the columns).

The inclusion procedure terminates once we arrive at a certain (p + 1)th upper half-axis
such that its first index (0, p + 1) turns out to be a KH zero for the set B just singled out. At
this point B is a base set, (0, p + 1) is added to the complementary set Bc.

For the reason explained in remark 8, B will be called the (first quadrant) ladder base set
in the sense defined below.

Definition 10. A ladder set in the first quadrant of Z
2 is defined as a union of p decreasing

rows
⋃p

k=1{(h− 1, k− 1) | k = 1, . . . , p, k = 1, . . . , mk} with m1 � · · · � mp. Equivalently
one may speak of the union of q = m1 decreasing columns. A similar definition can be
given for the other three quadrants. A centred ladder set in Z

2 may then be defined as the
union of ladder sets in the four quadrants. The first quadrant ladder sets will be indicated
simply as ladder sets. We will use a more detailed notation for ladder sets in Z

2. When we
need to specify the number of elements contained in the rows (ordered bottom-up) of B, we
shall write Ba∗1 [m1 . . . mp]. Alternatively, if we wish to specify the elements present in the
columns (ordered left-to-right), we shall write Ba∗1{µ1 . . . µq} where q = m1, µ1 = p and
µj = max{i|mi � j}, j = 1, . . . , q.
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Proposition 2. The structure of the base set B is closely related to the geometry of the support
of ρ. Consider the lengths of the rows of Ba∗1 [m1 . . . mp]. m1 is equal to the number of distinct
projections a∗1 · rj of the scattering centres {rj }j=1,...,N . Clearly, if the projections are all
distinct, then m1 = N , p = 1 and the base set is linear. If some projections coincide, m2

is the number of the distinct a∗1-projections common to two or more scattering centres, m3 is
the number of distinct a∗1-projections common to three or more scattering centres, and so on.
Conversely, µ1 . . . denote the multiplicities of the a∗1-projections, in decreasing order.

Proof. The proof is given in [1], section 1.2.2 and appendix C. �
Proposition 2 has one important consequence. Unless many of the projections along the

chosen search direction coincide, the resulting base set (and hence the associated complete
set) will be very elongated along the search direction. Of course, one may try another of
the D possible search directions, but the resulting set will probably be very long. A search
procedure which is equally simple and effective while yielding more compact base sets is
hence preferable. The next two sections are devoted to the construction of more compact base
sets.

Note. If for some 1 � α � D the projections {rj · a∗α}j=1,...,N are all distinct, m1 = N

and the base set B is linear along a∗α , i.e. B = {ka∗α | k = 0, . . . , N − 1}. Let us consider
other directions σ̂ = (n1, . . . , nD) ∈ Z

2, σ̂ �= a∗α for all α. We can define the orthogonal
modular projections -j(σ̂) ≡ rj · σ̂ mod 1. The modulo operation is introduced because
|σ̂|2 = σ̂ · σ̂ > 1. Let us ask: is it always possible to choose a direction σ̂ in Z

D such that the
orthogonal modular projections rj · σ̂ mod 1 are all distinct and hence (cf [1], appendix B)
is a linear set B = {kσ̂ | k = 0, . . . , N − 1} always a base set? The answer is negative. The
following example makes this point clear in the case D = 2. Consider, in fact, an atomic
density consisting of four scattering centres (0, 0), (0, 1

2 ), (
1
2 , 0) and ( 1

2 ,
1
2 ). It is easy to check

that the modular projections of these positions along any σ̂ ∈ Z
2 always yield two different

values. Thus, the linearly independent sets lying on any line of Z
2 always contain only two

elements and therefore cannot be base sets.

4. A property of the ladder sets

As already mentioned in section 3, the KH matrix generated by the set of indices B involves
all the USFs relevant to indices in B − B. Thus, for singling out small complete sets, it is
convenient to consider B sets as compact as possible and made up of indices close to the origin.

Definition 11. Consider a generic (first-quadrant) ladder set B[m1 . . . mp] (see definition 10).
Then define the extremal corner points h′0 and h′′0 as, respectively, the index at the outermost
right of the top row and the index at the top of the rightmost column of B[m1 . . . mp].

One has the important property (recall definition 9):

Property 1. If B = B[m1 . . . mp] is a linearly dependent ladder set, i.e. B contains a KH zero,
then all the vectors with an index in Qh′0 (or in Qh′′0 ) are linear combination of the vectors with
an index in Q0 \Qh′0 (or in Q0 \Qh′′0 ).

Proof. Property 1 clearly holds true for |Ah′0〉. Now translate B[m1 . . . mp] by (1, 0). The
translated set shares with set Qh′0 only the indices h′0 and (h′0 +a∗1), while its remaining indices
lie in Q0 \Qh′0 . The translated set is also linearly dependent. Thus, |Ah′0+(1,0)〉 can be written
as a linear combination of |Ah′0〉 and of the vectors associated with the remaining indices of
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the translated set. As noted above, these indices belong to Q0 \Qh′0 , and since |Ah′0〉 is a linear
combination of vectors with indices in Q0 \Qh′0 , one also concludes that |Ah′0+(1,0)〉 is a linear
combination of vectors with indices in Q0\Qh′0 . In the same way, by taking m = 2, 3, . . . , one
shows recursively that each |Ah′0+(m,0)〉 is a linear combination of vectors of Q0\Qh′0 . By doing
so, all the vectors with index of the lowest row of Qh′0 are proven to be linear combinations
of vectors with index in Q0 \ Qh′0 . Actually they depend only on the elements belonging to
Q0 \ Qh′0 and to the rows going from zero to the value of the row where h′0 is located. Now
translate B by (0, 1). The resulting set shares with Qh′0 the elements h′0, h′0 +(0, 1) and possibly
some more h′0 + (m, 0) (with m > 0) resulting from the translation by (0, 1) of B. The vectors
associated with (h′0 + (m, 0)) with m � 0 already being determined, it follows that |Ah′0+(0,1)〉
is a linear combination of vectors associated with indices of Q0 \Qh′0 . Again, by considering
the further successive translations by (m, 0) with m = 1, 2, . . . , property 1 is proven for all
the vectors with index in the second row of Qh′0 and, by iteration, for all the vectors associated
with Qh′0 . The proof for Qh′′0 is identical. �

In conclusion, property 1 amounts to saying that finding a KH zero of a ladder set is
equivalent to stating a condition of known linear dependence for the countable infinity of
vectors associated with the positive quadrant with origin on h′0 (or h′′0).

5. Construction of ladder base sets in Z2

Property 1 makes the construction of ladder base sets straightforward once an inclusion
procedure has been devised which at each step ensures that the enlarged set is ladder-shaped.
Each step of the searching procedure set consists in enlarging a linearly independent set B by
including a further element and in evaluating the determinant of the associated KH matrix.
If the determinant is not zero, the previous procedure is iterated starting from the set B just
enlarged. In contrast, if the determinant is zero, the last element is stored separately in Bc, a
quadrant is excluded from further search, and then we can iterate the step with an element not
yet considered. The search is complete when the set cannot be further enlarged. Therefore, it
is important to find a condition ensuring that the considered set cannot be further enlarged.

First-quadrant square search

As a translated base set is still a base set we may restrict the search to the first quadrant of Z
2.

Consider the following algorithm. Start from 0 and include further elements in such a way
that the resulting set is as close as possible to a square. More explicitly, consider elements in
the following order:

(0, 0);
(1, 0), (0, 1), (1, 1);
(2, 0), (0, 2), (2, 1), (1, 2), (2, 2);
....

(24)

Remark 9. This search order guarantees that, at each step, the set is a (first-quadrant) ladder
set (cf definition 10) and the last added index is always one of its two extremal corner points
h′0 or h′′0 (cf definition 11).

At each step, the set is ladder-shaped and one evaluates the relevant KH determinant. Let h
(1)
0

be the first KH zero found. Owing to remark 9, either h
(1)
0 = h′0 or h

(1)
0 = h′′0. Assume,

for definiteness, that the first case occurs. We now use property 1. Then we may exclude all
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indices lying in Qh
(1)
0

from our search. Hence we carry on the inclusion procedure remaining

in the region Q0 \ Qh
(1)
0

. Let h
(2)
0 denote the next KH zero. Once again either h

(2)
0 = h′0 or

h
(2)
0 = h′′0. In both cases, the indices of Qh

(2)
0

may be excluded from further search. More
precisely, owing to property 1 in the appendix, we can restrict a further search to the indices of
the region Q0 \ (Qh

(1)
0
∪Qh

(2)
0
). At this point, the upper border of the region containing linearly

independent indices presents one finite step. The finiteness of N ensures that, after a finite
number of iterations, the lower boundary of the excluded region will be a staircase connecting
the vertical to the horizontal axis. In this way, no further indices of Q0 can be added to the B
set. Thus, set B will be a ladder base set and its cardinality will yield the a priori unknown N

value. The complementary set Bc consists of all the KH zeros found during the aforementioned
search and the complete set C is obtained as in equation (23).

This search procedure was reported, as a numerical example, at the end of section 1.2.2
of [1] suggesting that it would always yield a base set. This claim is now proven. It is worth
noticing that a procedure obtained from the one just described by exchanging the role of the
two axes in equation (24) will generally lead to a different base set.

Even though the inclusion procedures reported above do not choose at each step the
element closest to the origin, nonetheless the elements are still chosen among the ones closer
to the origin. Thus, it can confidently be expected that the radius of the resulting complete
set should be close to the minimal one. This is a noticeable improvement with respect to the
procedure reported in section 3.2.

Centred-square search

We now report another searching procedure which acts more symmetrically than the one just
described. It consists in looking for a base set which is as close as possible to a square centred
at the origin of reciprocal space. The inclusion proceeds as follows:

(0, 0);
(1, 0), (0, 1), (−1, 0), (0,−1); (1, 1), (−1, 1), (−1,−1), (1,−1);
(2, 0), (0, 2), (−2, 0), (0,−2); (2, 1), (−1, 2), (−2,−1), (1,−2); (2, 2), . . . .

The resulting set is a centred ladder set (cf definition 10). We now need to generalize
definitions 9 and 11.

Definition 12. The region Qh∗ associated with h∗ ≡ (h∗, k∗) is defined as follows:

• if h∗k∗ �= 0, Qh∗ is the quadrant

Qh∗ ≡
{
h = (h, k)

∣∣ |h| � |h∗|, |k| � |k∗|, sign(hh∗) = 1, sign(kk∗) = 1
}

internal to the quadrant of Z
2 where h∗ lies;

• otherwise if h∗ lies on one of the axes, say h∗ = (h∗, 0), Qh∗ is a half-plane

Qh∗ ≡
{
h = (h, k)

∣∣ |h| � |h∗|, sign(hh∗) = 1, |k| � 0
}
.

Definition 13. Consider a generic centred ladder set B (cf definition 10). For each of the
2D = 4 quadrants Q1 ≡ {(h � 0, k � 0)}, Q2 ≡ (h � 0, k � 0), Q3 ≡ (h � 0, k � 0),
Q4 ≡ (h � 0, k � 0), we can define D = 2 extremal corner points h′Qi

and h′′Qi
. h′Qi

will be
the index (hi;1, hi;2) having

|hi;2| = max
{|h · a∗2| | h ∈ B ∩ Qi

}
|hi;1| = max

{|h · a∗1|
∣∣ h ∈ B ∩ Qi; |h · a∗2| = hi;2

}
.

An analogous definition holds for h′′Qi
exchanging the maximization order.
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Figure 3. (a) A 40 × 50 pixel image. A 256-level greyscale is used (black = 255, white = 0).
By attributing the grey-level value to the centre of each pixel, and with some simple rescaling, the
image can be encoded as an atomic density ρ (cf definition 1) and its Fourier coefficients can be
evaluated (cf equation (3)). In this case, as only 344 points have a non-zero grey level, ρ is formed
by N = 344 scattering centres. (b) A Fourier reconstruction of the image in (a) using the Fourier
coefficients inside the cut-off (ellipse) in figure 2. Note the loss of resolution. In contrast, image
(a) can be exactly reconstructed from the complete set shown in figure 2.

Using these two definitions, property 1 can be straightforwardly generalized. Now note
that every last added index is one of the eight extremal corner points. Having made all the
due generalizations, all the considerations made for the first-quadrant square search apply to
this procedure. This procedure will determine a base set restricted to a region containing the
origin. Due to the greater symmetry of the search, the resulting complete set will generally
have a smaller radius with respect to any of the procedures reported before.

An example of centred-square search is given in figure 2. The density ρ is illustrated
in figure 3(a) as a 40 × 50-pixel greyscale image (black = 255, white = 0). The image is
encoded as an atomic density (cf definition 1), with some simple rescaling, by attributing
the grey-level value to the centre of each pixel and appropriately rescaling coordinates and
weights. The Fourier coefficients are evaluated by (3). The complete set is considerably
smaller than that obtained from the same density by the algorithm of section 3.2, which is
shown in figure 1. Figure 2 also shows an ellipse corresponding to the smallest high-resolution
cut-off that contains the complete set C. Figure 3(b) shows the image obtained by calculating
the inverse Fourier transform with such a cut-off. The resolution is evidently rather poor. In
contrast, we stress that an exact reconstruction of the image of figure 3(a) can be performed
as explained in section 6 using only the Fourier coefficients with index in C.

Spherical search procedure

Both the square and the centred-square search procedures do not ensure that the radius of the
resulting complete set is really minimal. Anyhow, they yield complete sets of radius close
to the minimal one. Their simplicity makes them well suited to problems where the high-
resolution cut-off is large enough to allow some freedom. For the sake of proof we describe
now a spherical construction procedure which might well yield the minimal radius but loses
much in terms of simplicity. It might be useful as a last resort after one of the former algorithms
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has failed to isolate a complete set for a given cut-off L. The spherical procedure runs as for
the former except that the sequence of indices is ordered by increasing radius. For instance,
with the Euclidean metric (M∗ = 1), it may proceed as

[(0, 0)]
[(0, 1), (1, 0), (0,−1), (−1, 0)], [(1, 1), (−1, 1), (−1,−1), (1,−1)]
[(2, 0), . . . ], [(2, 1), . . . ], [(2, 2), . . . ]
[(3, 0), . . . ], [(3, 1), . . . ], [(3, 2), . . . ], [(4, 0), . . . ], [(3, 3), . . . ], . . . .

The square brackets contain indices related by a π/2 rotation. Note that (4, 0) comes before
(3, 3) because 32 + 32 > 42. This implies that the last added index is not always coincident
with an extremal corner point (cf definition 13). Let us call B the portion of a base set isolated
at a certain point of the procedure and let h be the last added index, assumed to be different
from the extremal corner points of its quadrant. For simplicity we will suppose it to be in the
first quadrant (h ∈ Q1) and we will use the simpler notation h′0, h′′0 for the extremal corner
points (as in definition 11) instead of the more complex notation of definition 13. Suppose
now that the inclusion of h makes the set linearly dependent. We cannot straightforwardly
exclude h and the related quadrant Qh . Now, the linear dependence is a collective property
and one may always exclude h′0 or h′′0 (and the related quadrant) instead of the last added
index h when they do not coincide. The trouble at this point is that the exclusion of h′0 or h′′0
instead of h does not ensure that the resulting set is linearly independent. In fact, it may be
that {h } ∪ B′ (with B′ properly contained in B) is linearly dependent. In this case the index
(and related quadrant) to be excluded would be an extremal corner point of the subset B′.

Anyhow, we now show how to isolate B′ by a finite set of operations. First, we choose an
extremal corner point of B, say h′0 for definiteness. Start from h′0 and perform the following
test. If B ∪ {h } is linearly dependent (as supposed) and (B ∪ {h }) \ {h′0} is linearly
independent then h is included in B, the quadrant Qh′0 is excluded and the algorithm can
restart. If not, we must begin deleting indices from B. We delete first h′0 and we proceed
deleting ‘backwards’, or right to left and top to bottom when a row is empty. Before deleting
each new point we perform the same test as before (with B substituted by B′ which is what
remains of B after the deletions). By construction, for this reduced set B′ the point under test
is always an extremal corner point, just like h′0. As soon as we find a point h∗ for which the
test is successful, we can exclude the quadrant Qh∗ . The quadrant Qh∗ can be excluded by
using the subset B′ instead of B for enforcing property 1. In the worst case we will arrive at
the point h . In such a case the test must be successful and this subprocess will always reach
an end point. Excluding h , in fact, we are sure to obtain a linearly independent set.

Successively, we must re-examine all the formerly deleted points. So we proceed
back from Qh∗ (left to right and bottom-up) retracing our steps (except the newly excluded
quadrant(s)) up to h′0. For each re-included point we test the KH determinant and when we
find a KH zero we may exclude a new quadrant. After exhausting this second subprocess, we
may go back to the main cycle and restart the ‘spherical’ inclusion.

Comment. Even though the search procedure ensures that each newly added index is closest
to the origin, the conclusion that the final base set has the smallest radius is not rigorous. The
final shape of the base set may depend on the order in which indices with equal radius are
considered. Anyhow, the number of different ways of including these indices is finite. The
base set with the smallest radius will be found by considering all of these ways.
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6. Reconstruction procedure

Clearly, any density ρ : U
D �−→ C and its IDP {Uh}h∈ZD are related by a duality relation,

in the sense that the knowledge of ρ determines the IDP via equation (3) and, vice versa, the
knowledge of the IDP determines ρ via equation (4). For a positive atomic density, as reported
below question 6, the duality can be restricted to ρ and any complete set C. In fact, it holds
that:

Proposition 3. A complete set C as defined in section 3.2, that is the minimal set of indices
needed to be known in order to isolate a ladder base set, is also a complete set as in definition 2:
the knowledge of Uh with h ∈ C is sufficient to determine all the remaining ones.

Proof. The proof of a weaker statement is reported in [1], section 2.4. In that case,
simplicity was gained by allowing a bit of redundancy. The difference is the definition of
the complementary set (and, consequently, that of the associated complete set associated with
a given base set). In the less precise form of [1], the complementary set (let us denote this
variant by Bc

[1]) is defined as Bc
[1] ≡ {h + a∗α |h ∈ B, α = 1, . . . , D} \ B. The complete set

was taken as C[1] = (B− B)∪ (Bc
[1] − B)∪ (B− Bc

[1]). The latter set in the union is irrelevant
as Uh = U−h. In this paper, instead, Bc consists only of the KH zero found during the search
of the base set, as the search is based on the use of property 1. So, Bc ⊂ Bc

[1].
We first sketch the simpler proof given in [1] using Bc

[1]. If B = {h1, . . . ,hN } then
{|Ah1〉, . . . , |AhN

〉} is a basis of H and (UB), the relevant non-singular KH-matrix, is its Gram
matrix. Recall that any translated base set B + h is still a base set as the matrix (UB) is left
invariant. So, for any h ∈ Z

D , we can write (cf also section 3.1)

|Ah〉 =
N∑

p,q=1

|Ahp
〉 (U−1

B
)
pq
〈Ahq

|Ah〉. (25)

Left-multiplying by 〈A0| and using equation (19), we obtain

Uh =
N∑

p,q=1

Uhp

(U−1
B
)
pq

Uh−hq
. (26)

Now choose h = k + a∗β , with k ∈ Bc
[1] and 1 � β � D. Rewrite equation (26) using the

translated base set B + a∗β , and the right-hand side of equation (26) contains only elements of
C[1]. After exhausting all the k ∈ Bc

[1] and 1 � β � D, we recursively determine the Uh with
h = k + 2a∗β , h = k + 3a∗β , . . . .

For the proof with the smaller sets Bc and C, it is sufficient to show how one obtains Bc
[1]

from C. Substituting in equation (26) successively every h ∈ C[1] \ C, choosing only one index
from every pair (h,−h), we obtain a linear system with as many equations as unknowns.
In fact, the right-hand side contains only elements of C[1]. The system is clearly determined
because equation (26) is identically satisfied only when h ∈ B. �

Note. The proof just given has its mathematical value. On practical grounds, however, it is
more convenient to refer to Bc

[1] and C[1]. In fact, the difference between Bc and Bc
[1] (and

consequently between C and C[1]) is typically a very small number of indices lying on the
border of B. The few indices added very rarely would be outside a high-resolution cut-off (cf
figure 2) when C is inside.

We have now seen how to determine recursively all the Uhs with h �∈ C. In this way, as
already mentioned, the density can be obtained using equation (4). However, as implied by
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the noted duality, ρ can be obtained analytically from the knowledge of C. In fact, as shown
in section 2.5 of [1], the scattering centres are determined by the unimodular roots of a system
of polynomial equations, one equation for each index of Bc. In this respect, having found that
Bc ⊂ Bc

[1], the number of polynomial equations to be solved is smaller than that reported in
[1].

We now show how to combine these two methods to convert the system of polynomial
equations in two variables in a set of polynomial equations in a single variable. In this way, the
task of determining the coordinates {rj }j=1,...,N is considerably simplified. An important role
is played by the base sets of [1], also described in section 3.2. These sets are characterized by
a growth direction along one of the coordinate axes a∗1 or a∗2.

Algorithm 1

First step. Let B denote a known base set and let C denote the relevant complete set, also
known. Thus, we can evaluate any Uh with index h �∈ C by the recursive procedure just
mentioned. In particular, we shall evaluate all the Uhs required to single out the base set
Ba∗1 [m1 . . . mp] by the procedure reported prior to remark 8 in section 3.2. Adopting the
column notation (cf definition 10) Ba∗1 [m1 . . . mp] reads Ba∗1 [µ1 . . . µq] with p = µq and
q = m1.

Second step. Since m1 is equal to the number of the different projections x̂ along a∗1 = (1, 0)
of all the rj s and the µ̂s are the multiplicities of the x̂s for ̂ = 1, . . . , m1, we can reorder
the scattering centres as

{rj }j=1,...,N =
{
r̂,r = (x̂, ŷ,r )

}
[̂=1,...,m1; r=1,...,µ̂] .

The x̂s can be determined as follows. Firstly, we observe that the set of indices
(0, 0), . . . , (0,m1), lying in the first row, is linearly dependent. Then we use equation (22) with
N = m1 to evaluate coefficients α0, α1, . . . , αm1 which, in turn, determine the m1th-degree
polynomial equation (16). After solving the latter, the roots yields the m1 distinct values
ξ̂ ≡ exp(2π ix̂), ̂ = 1, . . . , m1 and the x̂s are determined.

Third step. We can write (see section 2.5 of [1]):

Uh ≡ U(h,k) =
m1∑
̂=1

ξh
̂ B̂,k (27)

after putting

B̂,k =
µ̂∑
r=1

n̂,re
2π iŷ,r k. (28)

By letting h range over 0, 1, . . . , (m1−1) and by keeping k fixed, equations (27) form a system
of linear equations in the B̂,ks for ̂ = 1, . . . , m1. In fact, all the required Uh values can be
evaluated by the aforementioned recursive procedure, while the ξ̂s have been determined at
the previous step. Besides, the ξ̂s being all different, the determinant is different from zero
and the B̂,ks are uniquely determined.
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Fourth step. Now take equation (28) with k �= 0 and multiply B̂,k by

ζ̂ =
(
B̂,0

)−1 =
(

µ̂∑
r=1

n̂,r

)−1

> 0.

Put ν ′
̂,r
≡ n̂,r ζ̂. Evidently, ν ′

̂,r
> 0 and

∑µ̂

r=1 ν ′
̂,r
= 1. Equation (28) becomes

B̂,kζ̂ =
µ̂∑
r=1

ν ′̂,re
2π iŷ,r k. (29)

For each ̂, the structure on the right-hand side is that of the Fourier coefficient with index k

relevant to a one-dimensional atomic density with µ̂ scattering centres. Thus, the ŷ,rs can
be determined algebraically, as in step 1 above, by solving a polynomial equation of degree
µ̂. After determining the ŷ,rs for r = 1, 2, . . . , µ̂, equations (29) can be solved in the
ν ′

̂,1, . . . , ν
′
̂,µ̂

. In this way, we determine all the weight ν ′
̂,r

associated with ŷ,r .

In conclusion, the determination of the N scattering centres and weights is equivalent to
solvingp+1 single-variable polynomial equations of degreesm1, µ1, . . . , µp and subsequently
p systems of linear equations.

7. Generalization and conclusions

The results worked out in sections 4–6 will now be generalized to the case D � 3.
Firstly, we need to generalize the definition of ladder set. To this end we need some formal

definitions. Let B denote a finite and simply connected subset of Z
D . Recall (see the beginning

of section 1.1) the definition of first neighbourhood of an index h.

Definition 14. We call the inner frontier FB of set B the set of points h ∈ B such that Nh

contains both points of B and points outside B. Similarly, FB, the outer frontier of B, is defined
as the set of points h �∈ B with the same property. Then define a corner point as a point
ĉ ∈ FB such that set (Nĉ ∩ B) − ĉ contains exactly D unit vectors which span R

D . In other
words, a corner point is one of the convex ‘corners’ of B. The indentation points of B are
defined complementarily as the concave ‘corners’ of B. Formally, a point of FB is called an
indentation point and is denoted by ı̂ if it has only D nearest neighbours hı̂,α , α = 1, . . . , D,
which belong to FB and such that hı̂,α − ı̂, for j = 1, . . . , D, point along the coordinate
axes of Z

D . We generalize definition 9 by introducing the positive hyperquadrant of indices
associated with ı̂ and denoted by Qı̂, as

Qı̂ ≡
{

h
∣∣ h− ı̂ = m1a

∗
1 + · · · + mDa∗D,mα = 0, 1, . . . , α = 1, . . . , D

}
.

Finally, the set B is a ladder set if for each of its indentation points, denoted by ı̂j with
j = 1, . . . ,M , one has B ∩Qı̂j = ∅ for j = 1, . . . ,M .

We now report a procedure for enlarging a set B of linearly independent indices such that
the ladder condition is ensured at each step and the enlarged set is as close as possible to a
hypercube. Assume we have found a linearly independent hypercubic set BM−1 of edge (M−1),
i.e. BM−1 = {h

∣∣0 � hj � (M−1), j = 1, . . . , D}. The assumption is legitimate because for
M = 0 one has B0 = {0} and this set is clearly linearly independent. In order to construct the
set BM we need to add to BM−1 the square faces (M,M, . . . , j,M, . . . , k,M, . . . ,M) with
1 � j < k � M . Thus, we must include the required indices, one at a time, in such a way that
the enlarged set is a ladder-shaped one at each step. After ordering the faces, this can be done
by adopting for each face the inclusion procedure considered in the case D = 2. For instance,
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in the case D = 3, one chooses the order (1, 2) ⇒ 1, (2, 3) ⇒ 2, (3, 1) ⇒ 3 and, assuming
M = 3, one enlarges in the following order:

[(3, 0, 3), (0, 3, 3)], [(3, 3, 0), (3, 0, 3)], [(0, 3, 3), (3, 3, 0)],

[(3, 1, 3), (1, 3, 3)], [(3, 3, 1), (3, 1, 3)], [(1, 3, 3), (3, 3, 1)],

[(3, 2, 3), (2, 3, 3)], [(3, 3, 2), (3, 2, 3)], [(2, 3, 3), (3, 3, 2)], [(3, 3, 3)].

For greater clarity, the elements relevant to the same face are inside square brackets. Actually,
elements already included must no longer be considered and the effective inclusion procedure
is

(3, 0, 3), (0, 3, 3), (3, 3, 0), (3, 1, 3), (1, 3, 3), (3, 3, 1), (3, 2, 3), (2, 3, 3), (3, 3, 2), (3, 3, 3).

At each step, in order to include the index and enlarge the linearly independent set of indices,
the resulting KH determinant must be different from zero. When this is equal to zero, the index
is a KH zero and it contributes to Bc. By construction, this element is found when a particular
face is considered. This has a ladder border and the index, by construction, lies either at the
right of the top line or at the right of the bottom line. We observe now that this index, denoted
by ı̂, is an indentation point for the set of linearly independent indices. In fact, it determines a
quadrant external to the face on the plane containing the face and, considering the directions
orthogonal to the plane, one obtains a hyperquadrant external to the set B. Besides, we can
now apply property 1 in order to express all the vectors relevant to the indices of the quadrant
contained in the considered face and originating at ı̂. Then, by moving along each direction
orthogonal to the face by a step at the time externally to B, we express all the relevant vectors
as linear combinations of the vectors relevant to the indices of Q0 \Qı̂. At this point, the search
of the base set proceeds as explained above by adding indices lying in Q0 \Qı̂. We can now
apply the same considerations of section 5, since the proof of property 1 is easily generalized to
the case D > 2, and in this way we may single out a base set, close to a hypercube. Similarly,
we may generalize the centred square algorithm (definitions 12 and 13 are easily extended to
D > 2). Also the more complex spherical algorithm reported in section 5 is easily extended
to D > 2.

The generalization of the results reported in section 6 is now immediate, and we can
conclude that the results of sections 4–6 apply to any D.

Comment. In concluding the paper, however, we would like to comment on the applicability of
the former procedures. So far, it has been assumed that the Fourier coefficients (or their moduli)
are known exactly. In practice, they are only known approximately owing to unavoidable
experimental uncertainties. Thus, the reported algorithms, in order to be used practically,
need to be supplemented with a technique which is able to correct the Fourier coefficients.
For crystallographic applications to structure solution, we have already found a satisfactory
procedure for the one-dimensional case [24] and we are working to extend it to the three-
dimensional case by the reported results. However, the numerical difficulties increase quite
sharply with N . This is due to the characteristic ill-conditionedness of Toeplitz matrices, even
though the cure for this problem is registering a continuous progress since Toeplitz matrices and
generalized Vandermonde determinants (see, e.g., [23, 25–28] and references therein) form an
active field of research, because they have applications in as many fields as the Fourier series.

On theoretical grounds, however, the interest of the former results can hardly be denied.
Returning to crystallography, crystal structures are routinely solved by other methods (such as
direct methods, maximum-entropy and shake-and-bake, cf [11, 29, 30]). They are all based on
constrained minimization of a statistical indicator in a chosen configuration space. However,
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the search for more powerful and reliable techniques, where the structure of constraints plays
a decisive role, is very active. This fact motivated our research for a deeper understanding of
the problem. Hence the interest of an analytical method of solution goes beyond the present
possibility of application.
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Appendix

Let h(1), . . . , h(p) denote the first p KH zeros during the search procedure of a ladder base set.
We now show that:

Property A1. All the elements of
⋃p

j=1 Qh(j) are linear combinations of elements lying in
Q0 \ (

⋃p

j=1 Qh(j) ).

Before proving this point, we need two further properties. The first states that:

Property A2. Suppose that between the {rj }j=1,...,N we have exactly N1 distinct projections
xj,1 = rj · a∗1 = rj · (1, 0). Reorder {rj }j=1,...,N = {(x̂, ŷ,r )}̂=1,...,N1; r=1,...,µ̂

, where ŷ,r ,
r = 1, . . . , µ̂, are the distinct (0, 1) projections of points sharing the same x̂. Then the line
subset of vectors |A(h,k)〉 (defined in equation (18)) with k fixed and h = 0, 1, . . . , contains
exactly N1 linearly independent vectors.

Proof. The generic element of the associated KH matrix of order q reads

(Uq)h1+1,h+1 = 〈A(h1,k)|A(h,k)〉 = U(h,k)−(h1,k)

=
N∑

j=1

nje2π ixj,1(h−h1) =
N∑

j=1

njξ
h−h1
j

where ξj ≡ e2π ixj,1 . It does not depend on k. The determinant of (Uq) is a generalized
Vandermonde determinant, given by (see equation (B.12) of [1])

det(Uq) =
∑

1�j1<j2<···<jq�N

nj1 . . . njq

∏
1�r<s�q

|ξjs − ξjr |2. (A1)

This formula shows that the determinant is equal to zero when q > N1. Thus, for h � N1,
|A(h,k)〉 is a linear combination of {|A(h,k)〉}h=0,...,N1−1. By the same reasoning, after denoting
by N2 the number of the distinct xj,2s, one concludes that, for any fixed h, only the vectors
{|A(h,k)〉}k=0,...,N2−1 are linearly independent, while |A(h,k)〉, when k � N2, is a linear
combination of {|A(h,k)〉}k=0,...,N2−1 The generalization to the case D > 2 is trivial. �

Property A3. The search of a base set can always be restricted to a finite hyperparallelepiped
R of Z

D , with R ≡ {(h1, . . . , hD)| 0 � h1 < N1, . . . , 0 � hD < ND} and N1, . . . , ND � N

are the number of distinct projections along the D coordinate axes.

Proof. This is an immediate consequence of property A2. �

Proof of property A1. The proof will proceed by induction. The property is true for p = 1.
Thus, we need to prove that the property holds true for (p + 1) if it is true for p. The search
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procedure is supposed to ensure that the last KH zero is located either at the far right of the top
row or at the top of the line at the far right. Refer, for definiteness, to the first case and name the
last KH zero by h(p+1). Put QT ≡ Qh(p+1) ∩ Qp, where Qp =

⋃p

j=1 Qh(j) denotes (inductive
hypothesis) the set of indices whose associated vectors are linear combinations of vectors
associated with Q0\Qp. Also put S1 ≡ Qp\QT, S2 ≡ Qh(p+1)\QT andΛ ≡ Q0\(Qp∪Qh(p+1)).
Adopting a simpler notation, we shall denote by �tj , �s(1),j , �s(2),j and �λj the vectors associated
with the j th point of QT, S1, S2 and Λ, respectively. The vectors of Qp either belong to QT

or to S1. They are linear combinations of vectors belonging to Λ and to S2, property 1 being
true at value p. Thus, one has

�s(1),j = αj,k�s(2),k + βj,k
�λk (A2)

�tj = γj,k�s(2),k + εj,k�λk (A3)

where (α), (β), (γ ) and (ε) are appropriate matrices and the sums over repeated indices are
understood. For the vectors of Qh(p+1) property 1 ensures the validity of a similar set of relations
which read

�s(2),j = α′j,k�s(1),k + β ′j,k�λk (A4)

�tj = γ ′j,k�s(1),k + ε′j,k�λk (A5)

where (α′), (β ′), (γ ′) and (ε′) are the matrices appropriate to this case. Moreover, property
A3 ensures that all the indices present in equations (A2)–(A5) are a finite set. Substituting
equation (A4) in the right-hand side of equations (A2) and (A3) one finds, respectively,

(δi,j − αi,kα
′
k,j )�s(1),j = (αi,k′β

′
k′,j + βi,j )�λj (A6)

(γi,kα
′
k,j − γ ′i,j )�s(1),j = (ε′i,j − γi,k′β

′
k′,j )�λj . (A7)

Equation (A7) follows by comparing (A3) and (A5). Since the �s(1),j s are fully known owing to
equations (A2), the system of linear equations (A6) and (A7) must be solvable with respect to
the �s(1),j s, while the remaining equations represent linear constraints for the �λj s. In this way,
one concludes that the �s(1),j s can be expressed in terms of vectors belonging to the L-shaped
region Λ and property A1 is proven. �
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[22] Gantmacher F R 1966 Théorie des Matrices vol 1 (Paris: Dunod)
[23] Gohberg I and Olshevsky V 1994 Numer. Math. 67 71
[24] Cervellino A and Ciccariello S 1999 Z. Kristall. 214 739
[25] Gohberg I and Olshevsky V 1997 J. Complexity 13 208
[26] Ng M K 1997 Linear Alg. Applic. 259 307
[27] Huang Y and McColl W F 1999 J. Parallel Distrib. Comp. 56 99
[28] Serra S 1999 Math. Comp. 68 793
[29] Bricogne G 1984 Acta Crystallogr. A 40 410
[30] Miller R, Gallo S M, Khalak H G and Weeks C M 1994 J. Appl. Crystallogr. 27 613


